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Part obsolescence dates (the date on which the part is no longer procurable from its 
original source) are important inputs during design planning.  Most electronic part 
obsolescence forecasting algorithms are based, at least in part, on the development of 
models for the part’s lifecycle.  Traditional methods of life cycle forecasting utilized in 
commercially available tools and services are ordinal scale based approaches, in which 
the life cycle stage of the part is determined from a combination of technological and 
market attributes (e.g., TACTrac, Q-Star, Total Parts Plus).  Analytical models based on 
technology and/or market trends have also appeared including a methodology based on 
forecasting part sales curves [1], and leading-indicator approaches [2].   

Existing commercial forecasting tools are good at articulating the current state of a 
part’s availability and identifying alternatives, but limited in their capability to forecast 
future obsolescence dates and do not generally provide quantitative confidence limits 
when predicting future obsolescence dates or risks.  More accurate forecasts, or at least 
forecasts with a quantifiable accuracy would open the door to the use of lifecycle 
planning tools that could lead to more significant sustainment cost avoidance, [3]. 

This paper demonstrates the use of data mining based algorithms to augment 
commercial obsolescence risk databases by increasing their predictive capabilities.  The 
method is a combination of life cycle curve forecasting and the determination of 
electronic part vendor-specific windows of obsolescence using data mining of historical 
last-order or last-ship dates.  The extended methodology not only enables more accurate 
obsolescence forecasts but can also generate forecasts for user-specified confidence 
levels.  The methodology has been demonstrated on both individual parts and modules. 

While successful electronic part obsolescence forecasting involves more than just 
predicting part-specific last order dates, being able to predict original vendor last order 
dates more accurately using a combination of market trending and data mining is an 
important component of an overall obsolescence risk forecasting strategy. 
 
  
Obsolescence Forecasting Approach 

 
The obsolescence forecasting approach discussed in this paper is an extension of a 

previously published lifecycle curve forecasting methodology based on curve fitting sales 
data for an electronic part [1].  In the existing methodology, attributes of the curve fits 
(e.g., mean and standard deviation for sales data fitted with a Gaussian) are plotted and 
trend equations are created that can be used for predicting the lifecycle curve of future 
versions of the part type (see the next section for an example).  Similar procedures could 
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be used to forecast the lifecycle trends of secondary attributes such as bias level or 
package type.  This obsolescence forecasting approach used a fixed “window of 
obsolescence” determined as a fixed number of standard deviations from the peak sales 
year of the part.  This method was evaluated along with several other approaches (i.e., i2-
TACTrac and Total Parts Plus) in late 2002 by Northrop Grumman (in the Air Force 
CPOM program) and proved to be about the same accuracy as the commercial ordinal 
scale forecasting approaches.   
 
Example Lifecycle Curve Forecasting Algorithm [1] – Flash Memory 

Figure 1 shows the historical and forecasted sales data for monolithic flash memory 
from [4].  The values of µp and σp that resulted from the best Gaussian fits to the data sets 
in Figure 1 were plotted, the trends for µp and σp are shown in Figures 2 and 3.  For flash 
memory the trend in peak sales year and standard deviation in number of units shipped is 
given by, 

 
 1997.2)1.5663ln(Mµ p +=  (1) 

 2.2479M)-0.0281ln(σp +=  (2) 
 
where M is the size of the flash memory chip in Megs.  The resulting trend equations can 
be used reproduce the lifecycle curve for the parts that were used to create the 
relationships and for parts that do not yet exist.  For example, for M = 1 Meg, the trend 
equations gives µp = 1997.2 and σp = 2.25 (you can compare these to the actual data in 
Figure 1).  Similarly, plugging in M = 512 Meg into equations (1) and (2) gives µp = 
2007 and σp = 2.07 (this is a monolithic flash memory chip that does not exist yet).   

0

50

100

150

200

250

300

350

400

1990 1992 1994 1996 1998 2000 2002 2004

Year

N
um

be
r o

f U
ni

ts
 S

hi
pp

ed
 (M

)

256K
512K
1M
2M
4M
8M
16M
32M
64M
128M

 
 

Figure 1 – Historical and forecasted sales data for monolithic flash memory [4]. 
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When generating the lifecycle curve trend equations one should be careful not to mix 

mil-spec parts and commercial parts.  For example, equations (1) and (2) were generated 
for commercial flash memory chips and should only be applied to commercial flash 
memory chips.  Mil-spec flash memory chips (if they existed) would be considered a 
completely different part and unique trend equations would need to be developed for 
them. 
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Figure 2 – Trend equation for peak sales year (µp), for flash memory. 

 

y = -0.0281Ln(x) + 2.2479
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Figure 3 – Trend equation for standard deviation (σp), for flash memory. 
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Determining the Window of Obsolescence via Data Mining 
The methodology described above provides a way to create or re-create the lifecycle 

curve for a part type given its primary attribute.1  In the original baseline methodology 
reference, [1], the “window of obsolescence” specification was defined to be at 2.5σp to 
3.5σp after the peak sales date (µp).  In reality, the window of obsolescence specification 
is not a constant but depends on numerous factors. 

We suggest that the window of obsolescence specification is dependent on 
manufacturer-specific and part-specific business practices.  For a particular part type 
(e.g., flash memory), historical last order date data is collected and sorted by 
manufacturer.  Each part instance (data entry) in the resulting sorted data has a specific 
value of primary attribute (e.g., 32M) for which the peak sales date (µp) and standard 
deviation (σp) can be computed using the previously created trend equations (for flash 
memory these are given in (1) and (2)).  The last order date for the part instance is then 
normalized relative to the peak sales year.  The normalization is performed for every part 
instance for the selected part type and manufacturer. 

Next a histogram of the normalized vendor-specific last order dates is plotted; the 
histogram represents a probability distribution of when (relative to the peak sales year) 
the specific manufacturer obsoletes the part type.  As an example, Figure 4 shows the 
histogram for Atmel (ATM) flash memory (based on 57 last order dates mined from 
PartMiner CAPS Expert).  In order to quantify the manufacturer-specific obsolescence 
probability, the histogram is fit with a Gaussian form and extract the parameters of the fit 
are extracted, i.e., µlo and σlo.  The window of obsolescence specification is then given 
by,  
 
 ( ) pσxσµµ windowceObsolescen lolop ±+=  (3) 
 
where x depends on the confidence level desired (x = 1 you have a 68% confidence that 
you have the range that accurately predicts the obsolescence event, similarly, x = 2 
represents 95% confidence).   

By combining the lifecycle curve trends and the ATM-specific obsolescence window, 
the resulting obsolescence dates for ATM flash memory are given by the following 
equation as a function of the size in Megs (M) and confidence level desired: 

 

 

                                                 
1 Primary attributes are attributes that can be identified with the evolution of the part over time. 

Obsolescence date = 1.5663ln(M)+1997.2 + [0.88 ± 0.72x](-0.0281ln(M)+2.2479)

Peak sales date Standard deviation 
in sales data

Number of standard deviations past 
the peak for ATM Flash

(4) 
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Note, (4) assumed that the uncertainty in the window of obsolescence dominates the 
model uncertainty associated with the trend equations.   

Using the methodology for the entire set of flash memory provided by PartMiner (262 
data points), yields the results shown in Figure 5.  The diagonal line in the plot shows 
exact agreement between prediction and actual.  The error bars represent a 68% 
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Figure 4 – Atmel (ATM) flash memory last order dates. 
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Figure 5 – Forecasting results for monolithic flash memory chips. 262 flash memory chips plotted.  Fixed Window 
model = assumes a fixed window of obsolescence specification of 2.5σp to 3.5σp, Data Mined Window model = 

assumes the manufacturer-specific window of obsolescence. 
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confidence level.  The accuracy with which the improved algorithm forecasts the 
obsolescence of parts is a substantial improvement over the original algorithm. 

 
Application of Data Mining Determined Windows of Obsolescence to Memory Modules 

As a further demonstration of the methodology described in this paper consider 
application to memory modules that are made up of multiple chips.  The obsolescence of 
memory modules is not generally dictated by the obsolescence of the memory chips that 
are embedded within them.  Rather, the obsolescence of memory modules is related to the 
beginning of availability of monolithic replacements for identical volumes of memory.  
As an example, in Figure 6, the 16M DRAM module became obsolete when monolithic 
16M DRAM chips became available. 

In the case of DRAM memory modules, the last order date data is collected.  Each 
module instance (data entry) has a specific value of primary attribute (e.g., 16M).  For 
each module instance, the peak sales date (µp) and standard deviation (σp) are computed 
for the monolithic equivalent.  The last order date for the module instance is then mapped 
(normalized) to the standard deviations before the peak sales date for the monolithic 
equivalent.  In the case of memory modules, there was no need to sort the data by vendor 
– all the vendors considered appear to be obsoleting memory modules based on the same 
driver.  Figure 7 shows a curve fit of the resulting data mined last order dates mapped to 
the life cycle curve of the monolithic equivalents. 

Armed with the relation shown in Figure 7 and the lifecycle curve trends for DRAMs 
(e.g., see [1]), obsolescence dates for DRAM memory modules can be determined. 
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Figure 6 – Obsolescence characteristics of DRAM memory modules vs. monolithic DRAM. 
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Discussion 
 

Successful use of existing commercial electronic part obsolescence forecasting relies 
on the assumption that the forecasting is updated often and that the forecasts become 
better (more accurate) the closer you get to the actual obsolescence date.  This implies 
that real forecasting value depends on an organization’s ability to institute a continuous 
monitoring strategy and its ability to act quickly if a part accelerates toward 
obsolescence.2  Unfortunately, the closer to the actual obsolescence event you get before 
the forecast converges, the less useful the forecast is, and thereby the value of pro-active 
refresh planning is limited.   Knowing the obsolescence date years in advance obviously 
provides many more options than knowing it 1 month in advance. 

The methodology presented in this paper is a move in the direction of providing real 
obsolescence forecasting with quantifiable confidence limits.  However, the work 
presented in this paper does not represent a standalone solution.  This approach needs to 
be combined with subjective information included in traditional obsolescence forecasting 
tools, e.g., number of sources, market share, technology factors, etc. 

It is also worth pointing out that the two examples presented in this paper are 
straightforward applications of the methodology (they are “easy” cases).  Not all part 
types have easily identifiable primary attributes (attributes that can be identified with the 
evolution of the part over time), therefore, we do not claim that the methodology will be 
useful on every part type.  The large electronic part databases are treasure troves of data 
                                                 
2 This implies that organizations should very carefully consider the update frequency of the electronic part 
availability risk forecasting data before subscribing to a particular tool or service if they expect to make 
practical use of the forecasts provided. 
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Figure 7 – Data mined data mapping for DRAM memory modules. 
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for predicting obsolescence, the challenge is figuring out how to mine the data to find the 
significant trends.  
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